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Abstract. In identifying the requirements of a markup language for de-
scribing the mathematical semantics of physics-based models, we pose
the question: “Is there a mathematical type for physical variables?”
While this question has no a priori answer, since physics is fundamen-
tally empirical, it appears that a large body of physics may be described
with a single mathematical type. Briefly stated, that type is formed as
the mathematical product of a physical unit, such as meter or second,
and an element of a Clifford algebra. We discuss some of the properties
of this mathematical type and its use in documentation of physics-based
models.

1 Introduction

We are interested in creating a markup language for the representation of phys-
ical models, i.e., a physics markup language. Our primary requirement for a
physics markup language is to represent the models that physicists and en-
gineers create and so, necessarily, the components with which they build those
models. The principal reason for creating such a language is to improve the com-
munication of the semantics of models of the physical world in order to support
interoperability of physics-based models with each other, such as with multi-
physics simulation, and interoperability with other non-physics-based models.
Physics-based models are used extensively in modeling and simulation (M&S)
frameworks to support a wide array of predictive and decision making applica-
tions of practical importance. An open and standard way of documenting the
physical and mathematical semantics of physics-based models, such as a markup
language might provide, would go a long way towards lowering the costs of model
development and validation. Additionally, since models form the basis of the the-
oretical development of physics, communication of research results and physics
education would also be favorably impacted.

In approaching these goals, we ask “What information is it necessary to spec-
ify in order to transmit knowledge of a physical model and to make the transmis-
sion unambiguous?” In particular, we are interested in identifying the specific
mathematical concepts necessary for expressing the physical semantics since,
once identified, they may be dealt with somewhat independently. We observe
that the typical computer code representing a physics-based model follows from
a mathematical model derived from the application of mathematically phrased
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physical laws to mathematical representations of physical objects. There is a rich
array of mathematical concepts used in these mathematical representations. This
raises the question as to how we approach the problem of representing all of these
mathematical concepts. For example, we need to specify the dimensionality of
the physical objects being modeled, their spatio-temporal extents, and the em-
bedding space. We also note that: the physical quantities and corresponding
units used to describe physical properties have a mathematical structure; the
physical laws that are applied usually have a differential expression; and, invari-
ance with respect to various transformations is a key concept. Each of these,
while they carry physical semantics, must be mathematically expressed.

2 Mathematical Requirements of a Physics Markup
Language

Physical semantics ultimately rests on mathematical phrasing. To be meaning-
ful, scientific theories are required to provide predictions that are testable. In
practice, this means we must be able to compare mathematically computed pre-
dictions to numerical measurement data. Accordingly, the first things we need to
express in a physics markup language are the mathematical symbols that repre-
sent the properties of physical objects. To be useful, a physics-based model must
represent a physical object with at least one of the object’s measurable proper-
ties, which has physical dimension expressed in specified units. Very often these
properties are modeled as variables and they are used to represent such things as
the positions, velocities, and accelerations of a physical object, which typically
vary as a function of time. A prediction results when, given the model, we can
solve for a given variable. We refer to these variables as physical variables. We
need to be able to express not only physical variables, but also the mathematical
operations upon physical variables and the mathematical relationships between
physical variables.

It is often said that most models in physics are ultimately partial differential
equations with boundary conditions. In order to specify these relations between
physical variables, we will require the ability to specify, in addition to the physi-
cal variables themselves, differential operators, such as gradient, divergence, and
curl, acting on scalar and vector fields, as well as equality and inequality re-
lationships. Note that this use of the term field is not the usual mathematical
meaning as in, for example, “the real numbers form a field”, but is specifically
a physicists meaning. A physicists notion of a physical field (temperature field,
gravitational field, etc.) is a scalar or vector quantity defined at each point in a
space-time domain. Specifying a model in terms of differential equations is an
implicit form of specification, since in order to express the variables as explicit
functions of time we will require a solution to the equations.

There are many more mathematical concepts that we need to express to
represent models with physical variables. We know, for example, that: classical
mechanics makes use of scalars, vectors, and tensors defined in space-time; these
vectors have length, giving metric properties to objects defined in space-time;
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quantum physics makes use of Dirac spinors and Hilbert space vectors (bra-
ket notation); general relativity requires transformation between covariant and
contra-variant forms using a non-trivial metric tensor; and, models of physical
objects possess spatial extent and often have defined boundary surfaces. Dif-
ferential equations need to be expressed over definite volumes, and boundary
conditions need to be expressed on the bounding surfaces of those volumes. We
often want to specify a preferred geometric basis for the expressed geometry, such
as rectangular, cylindrical, or spherical coordinates. Until we can express the se-
mantics of these many mathematical concepts, we will not be able to express a
large body of physical models.

Statements of invariance are also important relationships between physical
variables. While the equations that make up a model may implicitly obey some
invariance, and additional statement of such invariance may seem redundant,
specific statements of known invariance are useful in understanding a particular
model and in performing computational evaluations using the model. Invari-
ance is, in general, specified with respect to operations performed on physical
variables by particular operators. Such operators include Euclidean transforma-
tions (spatial rotations, translations, and reflections) and Lorentz transforma-
tions (space-time rotations, boosts, and reflections).

While in order to make specific predictions it is common to consider mod-
els as providing unique solutions for all of its physical variables as functions
on space-time, this is not always necessary. There is value in using models to
express incomplete knowledge of as well, which may result in sets of multiple
possible solutions. We may, for example, only only be able to specify that two
variables within a model have a functional dependence, i.e., X is a function of
Y, without knowing more detail. We may want to specify that a variable has
exclusive dependence on another or that it is independent of another. We often
need to state physical principles as inequalities, for example, for which there are
many solutions. It may be that we want to develop reusable models that can
be used to predict many different variables, but not necessarily simultaneously,
where each variable may have distinct dependencies, or lack thereof, on given
initial conditions. In building these models, we may need to develop a more
clear definition of what constitutes a model and under what conditions a model
permits solutions to be determined.

To summarize, a markup language for physics must support the following
mathematical concepts:

a) A physical attribute which has physical dimension and may be represented
in defined units. It may be represented with a scalar magnitude, or, if it is
a more complex property, by a vector, a tensor, or other object with the
necessary algebraic properties.

b) A physical object has spatial presence and extent, properties that are rep-
resented as point-like, 1-dimensional, or arbitrary dimensional attributes.
These properties may be described within the space-time reference frame of
the physical object itself, or within the space-time reference frame of another
physical object.
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c) The attributes of a physical object may satisfy a specified set of differential
equations or other mathematical relations.

Finally, it cannot be supposed that this is a complete tally of useful math-
ematical semantics. For example, statements of general physical laws, such as
Newtonian universal gravitation, will be aided by the use of mathematical quan-
tifiers to specify, for example, that gravitational forces are present between all
pairs of massive physical objects within a model. In general, it seems desirable,
if not necessary, to be able to express a full range of mathematical relations
between variables in physical models.

3 A Type for Physical Variables

The fundamental components that physicists use to build models are physical
variables, parameters that represent the physical quantity attributes of physical
objects. A physical quantity is an observable, measurable property of an object
in the physical world. A principal difficulty we have in representing physical
variables in a markup language is that physical variables do not generally have
a well-defined type, where we use the term type much as a computer scientist or
mathematician would, i.e., a class of objects with a well-defined set of allowed
operations. Physicists and engineers typically act as applied math practitioners
with a well-schooled intuition, and they are not always fussy about mathemat-
ical formalism. The types of physical variables are rarely declared as part of a
problem statement or model definition, and it is common to find abrupt transi-
tions in usage, from one implied type to another. While one might well consider
attempting to capture the reasoning abilities of these applied math practitioners
as an exercise in artificial intelligence, that is a separate research topic of its
own. We are undertaking here the problem of capturing as precisely as possible
the mathematical description of such models, and describing as concise a set of
clearly defined types as possible. The reason for looking more carefully at the
formal mathematical representations of physical variables is to determine what
is a sufficient amount of information to require for a semantic representation of
physical models.

So, we begin this inquiry into developing a physics markup language by pos-
ing the following primary question: “What is the type necessary for representing
physical variables?” Upon reflection, we may question why we should expect
there to be a single type for representing physical variables. We state, somewhat
axiomatically, that the objective of physics is to describe physical interactions
mathematically. One may dispute the underlying axiomatic assumption that
physical interactions may be described mathematically, but, pragmatically, we
are only interested in those interactions that may be so described, since that is
what affords us the ability to make predictions.

To answer the question as to why we should expect a single type for physical
variables, consider the following. If for each interaction of two physical variables
we were to be given a physical variable of a new type, it would not take very
long for the resulting type proliferation to make it difficult, if not impossible, to



5

describe the physical universe. Describing the physical universe is certainly eas-
ier if there is a countable, closed system of defined types, and easier still if there
are but a finite number of defined types. More importantly, we should expect
that if the physical universe is closed, so too in our mathematical description
of the physical universe should the set of objects that represent physical vari-
ables be closed under those operations that represent physical interactions. The
requirement of closure merely reflects the idea that physical interactions should
be a function of the physical quantities of the interacting objects and should
result in physical effects, where the effects may also be represented using physi-
cal variables. Without a requirement of closure for physical variables, we would
allow non-physical results from the interaction of physical objects or we would
allow physical effects to result from non-physical interactions. We therefore re-
quire the definition, from a formal perspective, of a type for representing physical
variables, which has a mathematical description, being essentially a set that is
closed under defined operations.

We also undertake this inquiry with the understanding that a practical solu-
tion today may well be improved upon later since it is impossible to anticipate
all of the future developments of theoretical physics. This reality should not de-
ter us, however, from attempting to answer our primary question, since there is
significant challenge and great utility in handling only those representations of
physical variables that have been described to date.

In summary, we need to represent the idea of physical variables, the mathe-
matical symbols used to represent specific physical properties of physical objects.
The physical variable may be thought of as having all of the mathematical prop-
erties that the applicable physical theories indicate that they should have, and
also be capable of holding the corresponding measurable values. The values may
be arrived at by measurement of the corresponding physical objects attributes,
or by prediction arrived at by applying physical laws, e.g., equations, to other
measured attributes of a system of physical objects.

4 The Physical Dimensional Properties of Physical
Variables

The term “physical quantity” is a fundamental one in physics, narrowly defined
by the International System of Units (SI) as the measurable properties of physical
objects. Common usage often substitutes the phrase physical dimension for the
SI defined phrase physical quantity, and uses the term physical quantity more
loosely. A “physical dimension” in this sense should not be confused with the
separate notion of spatial dimensions, e.g., those defined by three spatial basis
vectors.

The SI has also defined base quantities: they are length, mass, time, elec-
tric current, thermodynamic temperature, amount of substance, and luminous
intensity with corresponding dimensions represented by the symbols L, M, T, I,
Θ, N, and J [1]. Derived quantities may be created by taking products, ratios,
and powers of the base quantities. A measurement generally returns a positive,
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definite quantity and a zero value implies an immeasurably small amount of the
quantity. The result of a simple (scalar) measurement of a physical quantity is
represented as the product of a scalar real number and a physical unit, where
the physical unit is a scale factor for a physical quantity or physical dimension.
While there is debate within the physics research community as to how many
physical dimensions are truly fundamental, standard practice is to use the seven
SI base quantities mentioned above. The SI also provides corresponding stan-
dard base units for the seven base quantities: meter; second; kilogram; ampere;
Kelvin; mole; and candela. Within the SI standard, many other units, called
derived units, are defined in terms of these base units.

While the SI system is commonly used, it is not used exclusively. Other
systems may have a different set of fundamental dimensions, base units, or both.
A simple way to characterize the system used for a given model is to specify, for
n fundamental dimensions, an n-tuple of defined units. This explicitly specifies
the base units while implicitly specifying the base dimensions and supports the
expression of a model for any set of defined absolute quantities.

In its most comprehensible form, then, a physical variable represents a quan-
tity, like a length, which is generally measured as a finite precision, real number
of units, where the units are some reference or standard units. While an individ-
ual measurement is most easily thought of as a scalar quantity, physical variables
may have multiple components which are more suitably represented as vectors or
tensors. Measurement of these more complex objects is correspondingly complex.

4.1 The Mathematics of Units and Dimensions

As asserted earlier, the semantics of physics is largely contained within the math-
ematical properties of the components with which we describe physical models.
We now begin to examine the mathematical properties of physical variables. The
operation of taking the physical dimension of a physical variable, X , is usually
written with square brackets, as [X ]. This operation, which is idempotent, i.e.,
[[X ]] = [X ], is like a projection, where the information about magnitude, units,
and spatial directionality of the physical variable is all lost. We can enumerate
some of the properties of physical variables under the physical dimension bracket
operation:

All physical variables have physical dimension composed of the fundamental
dimensions:

[X ] = LαMβTγ IδΘεNζJη, (1)

where the exponents, α, β, γ, δ, ε, ζ, and η, are rational numbers.
Physical variables may be added if they are of the same dimension:

If [X ] = [Y ], then [X + Y ] = [X ] = [Y ]; (2)

The physical dimension of a product of physical variables is the same as the
commutative and associative product of the physical dimensions of the factor
variables:

[X ∗ Y ] = [X ] ∗ [Y ] = [Y ] ∗ [X ] ; (3)
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[X ∗ Y ∗ Z ] = [X ∗ Y ] ∗ [Z ] = [X ] ∗ [Y ∗ Z ] (4)

The physical dimension of the reciprocal of a physical variable is the reciprocal
of the physical dimension of the variable:

[X−1] = [X ]−1 (5)

The physical dimension of a real number is defined to be 1. Formally, the physi-
cal dimensions of physical variables form a commutative, or abelian group. This
group may be written multiplicatively, which corresponds to the usual way in
which dimensional quantities are manipulated in most physical applications.
Written multiplicatively, the group elements are the identity, 1, and, in the case
of SI, n = 7 base quantities, L, M, T, I, Θ, N, and J, along with their powers
and their products. Being abelian, this group may also be written additively,
where the group element representation is as an n-tuple of exponents for the n
base quantities. The additive representation of the group is useful in performing
dimensional analysis. The exponents of the dimensions are often integers, al-
though for convenience in some applications the exponents are extended to the
rational numbers. When written additively, the physical dimensions of physical
variables may be seen to form a vector space, where vector addition corresponds
to multiplication of the underlying physical variables and scalar multiplication of
the n-tuple of exponents corresponds to raising the physical variables to various
powers.

By taking the physical dimension of a physical variable we have lost some
essential pieces of information, which we now seek to recover. In particular, for
what is commonly thought of as a scalar physical variable, we need to represent
the combination of the units and magnitude of the physical property. In order to
do so, we here introduce the following notation: X = {X}u ∗ u, where a physical
variable is factored into two parts: the first part is {X}u, while the second part
is the unit, u, that the physical dimension is expressed in, i.e., [X ] = [u], The
first part, {X}u, which is properly scaled with respect to the unit, u, is the non-
physically-dimensioned part of the physical variable, i.e., [{X}u] = 1. We will
call this part of the physical variable, {X}u, the spatial part.

Units provide a scale factor for each of the base dimensions, giving a base
unit for each base dimension. A unit is either a base unit or a unit derived
by (commutative) products and ratios of base units. For example, a product of
two units of length results in a unit having physical dimension L ∗ L = L2, a
unit for area. A product or ratio of different units may be reduced if they have
fundamental dimensions in common. A ratio of two different units having the
same physical dimension, when reduced, results in a dimensionless real number
called a conversion factor. For example, [foot] = [meter ] = L so meter/foot ≈
3.28.

We finally note that we can represent the logarithm of the physical variable
as the formal sum

ln(X ) = ln({X}u) + α ∗ ln(u1) + ...η ∗ ln(u7) (6)
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where u =
∏7

i=1 ui in the case of seven base units. We can more simply represent
this as

(z ,α,β, γ, δ, ε, ζ, η) (7)

where z = ln({X}u), representing the measured quantity in units derived from
base units. In this representation of the physical variable the operation of taking
the physical dimension is seen to be a true projection operator, i.e.,

[(z ,α,β, γ, δ, ε, ζ, η)] = (0,α,β, γ, δ, ε, ζ, η). (8)

where the result is an element of the additive representation of the group of
physical dimensions. The space of fundamental and derived physical dimensions
so represented comprises a vector space, where the vector addition operation cor-
responds to multiplication of physically dimensioned quantities and the scalar
multiplication operation corresponds to raising physical quantities to powers. A
change of units is represented as a translation operation in the first (dimension-
less) component of the (1 + n)-tuple that represents the physical variable when
that component is an element of a scalar field.

While physicists routinely perform legitimate mathematical manipulations
of physical dimensions, they do this intuitively and the formal mathematical
structure of physical dimensions is rarely expressed.

5 A Type for the Spatial Part of Physical Variables

The spatial part of physical variables, i.e., {X}u, has the following properties: we
can multiply it by a scalar; we can add more than one together; we can multiply
more than one together. The first two of these properties indicate that they form
a vector space. The third property, multiplication of physical variables, is trivial
when the spatial part of a physical variable is a scalar. After scalars, the most
common object representing the spatial part of physical variables are vectors.
When a physicist or engineer refers to a “vector”, they usually mean a rank-1
tensor. Physicists and engineers also use higher rank tensors, most commonly
rank-2 tensors.

Typically used vector multiplications are: the scalar, inner, or dot product;
and, the vector cross product, or Gibbs’ vector product. Well known, though
less commonly used, is the dyadic, outer, or tensor product, where higher rank
tensors may be constructed from lower rank tensors. Usually a metric is tacitly
assumed, typically Euclidean. Other metrics are required for special and general
relativistic mechanics.

The manner in which these vectors and tensors are manipulated by physi-
cists is largely ad hoc, rather than uniform, and is usually derived from the work
of prior physical scientists. Maxwell popularized Hamilton’s quaternions, using
them to express electrodynamics. Quaternions were superseded by the vector
analysis of Gibbs [2] and Heaviside, which survives to this day, largely unaltered
except by addition of new concepts, objects and operations. The mathematics
used in quantum mechanics today follows the style of usage originated by the
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physicists that originally employed it. While we do not mean to suggest in-
correctness in their treatment, much of the mathematics used by physicists is
taught by physicists. A mathematician might find an absence of definition and
uniformity in the mathematical properties of physical variables as they are most
commonly used.

Considering these issues, a principle question that that we raise is: “What is
the type of the spatial part of physical variables?” By asking this question we
mean to proceed to understand the formal mathematical structure of these ob-
jects. Because physics is at root empirical, the best answer that can be provided
is to propose a type of object that appears to meet the criteria of matching the
known objects used by physicists as physical variables. Each time a new con-
cept, object, or operation is added, it would be helpful to formally extend an
axiomatic mathematical framework to incorporate the new in with the old. The
purpose for doing this was stated previously: closure in the world of physical
quantities and interactions should be reflected by mathematical closure in the
physical variables used to represent the physical world. Happily, this question
has been constructively considered and the best answer to date appears to be
that the spatial part of physical variables may be described by Clifford algebras
[3].

As usually encountered in the education of a physicist, physical variables,
specifically the spatial part of physical variables, appear to consist of several
types. Most commonly encountered are real scalars or vectors. Complex scalars
and vectors are also commonly used in representing physical variables. Minkowski
four-vector notation is well-known to students of physics to be a better notation
than Gibbs’ vector notation for electrodynamics, particularly the “Electrody-
namics of Moving Bodies”, [4] i.e., special relativity. General relativity intro-
duces multi-ranked tensors; elementary quantum mechanics introduces Hilbert
spaces and the non-commutative spinors. Finally, modern quantum particle the-
ories make liberal use of elements of various Lie algebras. To the casual observer,
there appears to be a multiplicity of types.

Clifford algebras are not commonly used by most physicists, though they are
heavily used in some forefront research areas of theoretical physics. While there
is currently some effort [5] to change this state of affairs, one may reasonably
ask why we should introduce into a discussion of standards a construct that
is not commonly used. The answer is based on two requirements. First, there
is the important problem of being able to translate or otherwise relate models
expressed in different notations. If there is one notational representation that can
capture the semantics of a catchall of individual notations, then it is useful to
have it present at least as an underlying representation, even if it is infrequently
expressed explicitly in the specification of models. That is, since it represents the
current understanding of the fundamental underlying mathematics for most, if
not all, physical models, representing Clifford algebras is sufficient to represent
physical variables in most known models. Secondly, since many models explicitly
reference Clifford algebras, it is necessary to represent Clifford algebras in order
to represent the semantics of those models.
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5.1 Features of a Clifford Algebra

The objects of Clifford algebras are vectors, although they may not always seem
as recognizable to physicists as the usual vectors that come from the Vector
Analysis of Gibbs and Heaviside. The vectors of Clifford algebras are also referred
to as multivectors and represent a richer set of objects than those in Gibbs’ Vector
Analysis. Some multivectors are the usual vectors of Gibbs’ Vector Analysis,
some are scalars and some are higher ranked tensors. Some of these multivectors
represent formal sums of the usual scalars, vectors, and tensors. Some of these
multivectors may be used to represent subspaces. Some of these multivectors
are used to represent rotations, translations, spinors and other objects normally
described by Lie groups. In summary, the principle mathematical objects of
interest to physicists are all elements of Clifford algebras.

A key element of Clifford algebras is the Clifford product, an associative
vector product with an inverse. The other vector products previously mentioned
here do not have these properties. Since Clifford algebras also have an identity
element and closure holds for the Clifford product, there is a resulting group
structure for the vectors in a Clifford algebra. Of particular interest, Lie algebras
are sub-algebras of Clifford algebras. A complete description of Clifford algebras
is well beyond the scope of this paper and is well described elsewhere [3].

One may well ask “If Clifford algebras are as powerful as advertised, why did
physicists ever commit to the standard Vector Analysis?” There may be several
speculative answers possible [6]. Certainly the work of Grassman, which gave
rise to Clifford algebras, may not have been as well publicized among physi-
cists as Gibbs’ work was, though Gibbs was certainly aware of it. Additionally,
the standard Vector Analysis serves quite well for much of classical physics, so
its continued use is a reasonable satisficing strategy. How, then, is Gibbs’ Vec-
tor Analysis not the best fit for physics? It begins to be less comfortably used
when vector objects of rank greater than one, i.e., tensors, are required, but,
most certainly, spinors appear to be foreign objects within Vector Analysis. Per-
haps one of the sorest points is that vector cross-product defined by Gibbs only
exists in three dimensions. Modern physicists like to stretch well beyond three-
dimensions. In Clifford algebras the cross product has been defined for spaces of
any dimension. Outside of three dimensional space it is not a simple vector, and
does not appear to be describable within Vector Analysis.

We note the following several points that may be of particular interest to
mathematicians. Hestenes narrows the range of Clifford algebras of interest to
physicists to geometric algebras. Geometric algebras are the subset of Clifford
algebras defined over the reals and possessing a non-singular quadratic form [3]
[7], so, from the mathematical perspective, expressing elements and operations
of a Clifford algebra are sufficient for doing the same for elements of a geometric
algebra. A concise axiomatic development of geometric algebra and its differen-
tial calculus, called geometric calculus, are provided by Hestenes [3]. Geometric
calculus claims greater generality than Cartan’s calculus of differential forms [3].

Of particular interest to physicists and other intuitive mathematicians, geo-
metric algebras have natural and well developed geometric interpretations [11]
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which, interestingly, have been exploited in computer graphics rendering using
the coordinate-free representations of rotations and translations. The work of
reformulating physics in this coherent notation, not overwhelming, but no small
task, has been underway for many years [8] [9] with the result that it appears to
have great potential for unifying the mathematics of physics. Geometric calculus
has even been successfully applied to gauge theory gravity [10], one of the more
esoteric research frontiers in physics.

We are left to conclude that the standard Gibbs’ Vector Analysis is by com-
parison just a convenient shorthand, derived from the ideas of Grassman which
have reached a fuller and richer expression in Clifford algebras. In sum, Clifford
algebras generally, and geometric algebra in particular, provide a coherent al-
gebraic method for representing the spatial part of physical variables for most
of classical and modern physics. It is certainly not the most commonly used
notation, but other notations may be readily translated into it.

6 Summary

Our purpose here has been to sketch the essential mathematical properties of
physical variables. One reason for doing this is to help clarify the mathemati-
cal semantics as separate from, though necessary to, the expression of physical
semantics. Having made this separation, experts in representing mathematical
semantics are now enabled to aid in the development of a physics markup lan-
guage by independently expanding mathematical semantic representations. In
particular, semantic representations of the mathematical properties of physical
dimensions and units, and of Clifford algebras, which include geometric alge-
bras, will greatly enable the expression of the physical semantics of physics-based
models. We believe that the expression of Clifford algebras in this way will be
significantly more straightforward from a mathematical perspective because it is
mathematically better defined than the collection of notations used for different
sub-theories within the physics community.
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